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Abstract: Floating bridges are suitable for connecting land parcels separated by wide and deep
waterbodies. However, when the span of the crossing becomes very long, the water environment
exhibits inhomogeneities which introduce difficulties to the modelling, analysis and design of the
bridge structure. The wave inhomogeneity may be described by means of field measurement and/or
numerical simulations. Both approaches face complications when the resolution is much refined. It is
thus important to examine the effect of the resolution related to the modelling of inhomogeneous
waves on the global structural responses. In this study, a hypothetical crossing at the Sulafjord is
chosen, and the wave environment in the year 2015 at 10 positions along the crossing is numerically
computed. Next, different inhomogeneous wave conditions are established based on the wave data
at 3, 5, and 10 positions, respectively. Time-domain simulations are conducted to examine the effect
of different modelling approaches of the inhomogeneous wave condition on the global responses of a
long, straight and side-anchored floating bridge.

Keywords: floating bridge; inhomogeneous waves; short-crested; hydroelasticity

1. Introduction

In places where the land is indented by waterbodies, bridges are often constructed
and used to connect the separated land parcels. For certain crossings where such structures
are to be planned, however, wide and deep waterbodies and/or challenges related to weak
seabed properties prohibit the construction of conventional bottom-foundation bridges. In
such situations, floating structure technology is often recognized as a preferred solution.
For example, the coastline of Norway is scattered by many fjords. The coastal highway
route from Kristiansand in the south to Trondheim in the north is approximately 1100 km
in length. However, the total travel time by road is about 21 h owing to the time-consuming
ferries for crossing wide and deep fjords. With an aim to significantly reduce the travel
time, the Norwegian Public Road Administration (NPRA) launched the E39 project to
achieve an improved and potentially ferry-free coastal highway route [1]. Floating bridges
were soon identified as a viable option, and many design options and research studies
were carried out in the past few years [2–7].

Established analysis and design methods for floating bridges commonly assume that
the characteristics of the wave field surrounding the floating structure are homogeneous.
However, this may not be the case for long floating bridges, as the length of the crossing and
complex topography could lead to spatially varying wave conditions along the span of such
structures. For example, inhomogeneity in the wave field was observed for both proposed
crossings at the Bjørnafjord [8] and the Sulafjord [9]. Special treatment is needed to account
for such effects in numerical simulations that are commonly based on the frequency domain
diffraction solution where the boundary value problem is only solved for homogeneous,
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harmonic waves [10–15]. In such procedures, a uniform wave field around a floating
pontoon or a segment of continuous floating structures is typically assumed while the
wave inhomogeneity is represented by spatial variations across different pontoons or
structural segments. Studies show that such wave inhomogeneity could lead to even larger
bridge responses when compared with the simplified approach of applying the worst wave
condition to the entire structure [12,14–16], rendering the structural design to be on the
unconservative side. This implies that the inhomogeneous wave conditions need to be
considered to ensure a safe design of such structures.

On the other hand, the large spans of the crossings inevitable lead to slender bridge
structures. For example, floating bridge designs with a length of around 5 km for crossing
the Bjørnafjord and the Sulafjord commonly possess low-frequency fundamental modes
that may be excited by slow-varying second-order wave loads and a large number of
flexural modes spanning across a wide range of natural frequencies that could be excited
by the local wind waves. Thus, realistic description and modelling of inhomogeneous
wave conditions are of great importance for the analysis and design of such structures.

The inhomogeneous wave field in a fjord may be assessed by field measurements [8] or
numerical simulations [17,18]. Field measurements are most accurate and reliable but costly
and time-consuming. Moreover, a satisfactory resolution along the crossing can be difficult
to achieve unless a large number of measurement devices are deployed for sites with a
very large span [8]. Alternatively, numerical simulations could be employed by means of
numerical models. Well-known third generation spectral models are WAM [19], WAVE-
WATCH III [20], and SWAN [21]. These models are based on a statistical representation
of waves using two-dimensional (frequency-direction) wave spectra. They are known as
phase-averaged models, and they are computationally more efficient than phase-resolved
approaches [22,23].

Especially, SWAN can deal, among others, with the wave transformation processes
of refraction, shoaling, breaking, and wind input, which are dominant in regions with
intermediate water depths that are usually within a few to tens of kilometers from the
coast. Other well-known models for nearshore wave transformation applications are
MIKE21-SW [24] and STWAVE [25].

Similar to field measurements, a high resolution of a large wave field demands high
computational efforts that may not be afforded as part of common design practice. To this
end, it is important to understand the effect of different resolutions adopted in modelling
inhomogeneous wave conditions on the structural responses of a floating bridge. More
importantly, it is desirable to get a sense of how much uncertainty is expected if a simplified
approach employing a coarse resolution is adopted. This would have a significant impact
on the computational effort in design practice and detailed studies especially when long-
term analysis is needed. However, such an effect has rarely been studied in the literature.

In this paper, a computational study of the dynamic response of a long, straight
and side-anchored floating bridge under inhomogeneous wave conditions is carried out.
A hypothetical crossing at the Sulafjord is chosen, and the wave environment in the
year 2015 at 10 positions along the crossing is numerically computed. Next, different
inhomogeneous wave conditions are established based on the wave data at 3, 5, and
10 positions, respectively. Time-domain simulations are conducted to examine the effect
of different modelling approaches of the inhomogeneous wave conditions on the global
responses of a long, straight, and side-anchored floating bridge.

This paper is organized as follows: Section 2 defines the problem and describes the
models used in this study. Section 3 presents and discusses the results of the inhomo-
geneous sea states at the selected site location. The global analysis of a long floating
bridge considering different modelling approaches of the inhomogeneous wave condition
is presented in Section 4. Concluding remarks are given in Section 5.
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2. Models and Methods

In this study, a hypothetical crossing at the Sulafjord is selected for numerical sim-
ulation and analysis of the inhomogeneous wave field. Then, an inhomogeneous wave
condition is established, and a series of inhomogeneous wave load cases are defined based
on different modelling approaches. Next, the effect of different inhomogeneous wave load
cases on a long, straight, and side-anchored floating bridge design concept for the crossing
of the Bjørnafjord is examined.

2.1. Selected Site Location and Enviromental Modelling

A hypothetical crossing in the area of the Sulafjord, central Norway, is considered in
this study. Figure 1 shows the selected site location of the crossing. The total length of
the crossing is approximately 4250 m. Ten positions along the crossing, marked TP1 to
TP10, are selected for analysis of the inhomogeneous sea states. The coordinates of the ten
positions are listed in Table 1. It should be emphasized that this location is chosen in view
of the fact that the wave field in the Sulafjord was found to be inhomogeneous [9] and the
crossing length is very similar to that at the Bjørnafjord where a floating bridge is planned
to be constructed [14,15].
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Figure 1. Selected hypothetical crossing: (a) global view; (b) zoomed-in view with 10 positions along the crossing selected
for analysis.

Table 1. Coordinates and water depth of 10 positions along the crossing.

Position Longitude Latitude Depth

Degree Minute Second Degree Minute Second m

TP1 6 2 53 62 22 59 234
TP2 6 3 4 62 23 4 329
TP3 6 3 15 62 23 9 368
TP4 6 3 39 62 23 17 419
TP5 6 4 11 62 23 27 441
TP6 6 4 43 62 23 39 436
TP7 6 5 5 62 23 47 403
TP8 6 5 22 62 23 54 350
TP9 6 5 32 62 23 57 304

TP10 6 5 53 62 24 5 161

Figure 2 illustrates the procedure for the sea environment simulation and generation
of the inhomogeneous wave conditions for the current study. Wave data from the well-
known climatology of ECMWF ERA5 [26] is used as input to the numerical analysis of
the inhomogeneous wave conditions at the selected hypothetical crossing. In the present
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study, the data from 2010 to 2015 with a 1 h interval is used. SWAN is employed with
detailed bathymetry of the modelled area for the numerical analysis of the environmental
conditions at the selected 10 positions along the hypothetical crossing. Figure 3 shows the
modelled region with five yellow points representing the boundaries where the input of
wave data is available. The in-between points of the boundary take interpolated values.
At the shore boundaries, waves are not generated, and the land absorbs all incoming
wave energy. The environmental model covers a planar area of 1 degree in latitude by
2.5 degrees in longitude. A refined resolution of 150 m is adopted for a nested area of
15 km by 15 km that covers the hypothetical crossing. The outputs include the hourly wave
spectra at the ten selected locations along the hypothetical crossing, using 34 frequencies
and 36 directions. For more detailed information of the environmental modelling, reference
is made to [17,27]. Note that the accuracy of the SWAN model was validated by comparison
with field measurement data [17,27]. The calculated wave spectra are next processed by
selecting the most severe wave conditions in one year and fitted to the wave conditions at
the Bjørnafjord by keeping the wave characteristics (significant wave height Hs, peak period
Tp and mean wave direction θp) while adopting the spectral parameters (non-dimensional
peak parameter γ and spreading coefficient n) specified in the design basis [28]. This is
discussed in detail in Sections 2.3 and 3.
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2.2. Floating Bridge Model

An idealized straight and side-anchored floating bridge model based on the phase
3 design concept for the crossing of the Bjørnafjord [29,30] is employed in this study to
investigate the effect of inhomogeneous wave conditions on the global bridge responses.
Figure 4 illustrates the bridge model with a total span length of 4.6 km. In view of the
fact that both the Bjørnafjord crossing and the hypothetical crossing at the Sulafjord are
sufficiently deep to assume deepwater conditions [31], the water depth is set to a constant
value of 300 m in the numerical model. The bridge girder is vertically supported by
35 pontoons, labeled A1 to A35, with an even spacing of 125 m. The bridge is laterally
restrained by four mooring clusters spaced approximately 1 km apart. Each mooring
cluster is tethered to a moored pontoon and composed of eight mooring lines arranged
in a semi-taut configuration. Each mooring line contains a top studless chain segment of
50 m, an intermediate spiral strand wire segment of 600 m, and a bottom studless chain
segment of 50 m. The nominal diameter, dry mass per unit length, and axial stiffness
for chain segments are 147 mm, 432.2 kg/m, and 1.73 × 106 kN, respectively [29,30].
Likewise, these quantities are 124 mm, 80.3 kg/m, and 1.42 × 106 kN, respectively, for wire
segments [29,30]. Table 2 lists the sectional properties of the bridge girders and columns.
Table 3 lists the pontoon properties. Note that both moored and unmoored pontoons have
the same planar dimensions as shown in Figure 4. Moored pontoons have a larger height
and thus a larger draft to allow for a larger water displacement to counterbalance the
vertical forces exerted by the mooring lines. The boundary conditions are summarized
in Table 4. Note that the longitudinal translation and rotation about the vertical axis are
released at the north end to allow for thermal expansion and contraction as well as easy
connection to the transitional bridge [29].
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Table 2. Sectional properties of bridge girder and column sections. Ix’ denotes the torsional constant.
Iy’ and Iz’ refer to the second moment of inertia about the local y’- and z’-axes. Ix’x’ is the mass
moment of inertia per unit length about x’ axis.

Property H1 S1 F1 C

Mass 17,530 kg/m 19,780 kg/m 16,040 kg/m 9180 kg/m
Area 1.38 m2 1.65 m2 1.17 m2 1.53 m2

Ix’ 5.79 m4 7.88 m4 6.64 m4 14.92 m4

Iy’ 2.87 m4 4.06 m4 3.21 m4 9.65 m4

Iz’ 107.22 m4 116.52 m4 89.88 m4 12.94 m4

Ix’x’
1.2 × 106

kg/m·m2
1.3 ×106

kg/m·m2
1.1 × 106

kg/m·m2
2.3 × 105

kg/m·m2

Table 3. Pontoon properties.

Property Moored Pontoon Unmoored Pontoon

Weight (ton) 1452 850
Height (m) 8.5 5

Displacement (m3) 5.7 × 103 3.3 × 103

Roll inertia (ton m2) 4.2 × 105 2.2 × 105

Pitch inertia (ton m2) 6.1 × 104 2.3 × 104

Yaw inertia (ton m2) 4.2 × 105 2.3 × 105

Heave stiffness (kN/m) 6.7 × 103 6.7 × 103

Roll stiffness (kNm/rad) 1.5 × 106 1.5 × 106

Pitch stiffness (kNm/rad) 8.9 × 104 8.9 × 104

Table 4. Boundary conditions.

Degree of Freedom South End North End

Translation x Restrained Released
Translation y Restrained Restrained
Translation z Restrained Restrained

Rotation x Restrained Restrained
Rotation y Restrained Restrained
Rotation z Restrained Released

The finite element method is employed for numerical representation of the superstruc-
ture and the mooring systems of the floating bridge physical model. More specifically, the
bridge girders and columns are modelled using Euler beam elements accounting for pure
torsion in view of their slenderness. The mooring lines are modelled using compressionless
bar elements. The bridge pontoons are modelled as rigid bodies attached to the lower ends
of the bridge columns. The structural damping is modelled by using Rayleigh damping
with a 0.5% damping ratio for the lowest two vibration modes for the steel structures [28].
Note that in the calculation of structural damping, the effect of added mass due to the fluid
is not accounted for. In addition to the structural damping, potential damping and viscous
drag due to the sea water, as discussed below, are also included in the global floating
bridge model.

Both the mooring lines and the bridge pontoons are subjected to wave-induced hydro-
dynamic loads. For the submerged part of the mooring lines, the hydrodynamic load per
unit length is evaluated by using the Morison equation as

fm = ρwV
.
um + ρwCaV

( .
uw −

.
um
)
+

1
2

ρwCdD(uw − um)|uw − um| (1)

Herein, ρw is the water density, V is the volume per unit length of the mooring line, D
is the diameter of the mooring line, Ca is the added mass coefficient, and Cd is the quadratic
drag coefficient. Table 5 lists the coefficients for chain and wire segments. um is the velocity
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of the mooring line, while uw is the flow speed. The over-dots denote the time derivative,
i.e., the accelerations of the mooring line (

.
um) and the water flow (

.
uw).

Table 5. Morison coefficients for mooring lines.

Coefficients Chain Wire

Ca 1.0 1.0
Cd longitudinal 1.5 0.1
Cd transverse 2.4 2.4

WAMIT is employed to calculate the added mass, potential damping, and wave
excitation force transfer functions of the bridge pontoons in the frequency domain. The hy-
drodynamic coupling between adjacent pontoons is neglected as the spacing is considered
to be large enough. By applying the Cummins formulation, the governing equations of
motion for a bridge pontoon can be written as

6

∑
j=1

(
Mp + A∞

j

) ..
upj(t) +

∫ ∞

−∞
κj(t− τ)

.
upj(t)dτ +

(
Kh

j + Kb
j

)
upj(t) = Fexc

j (t) (2)

where Mp is the pontoon mass, Aj
∞ is the added mass corresponding to the jth degree of the

freedom at infinite frequency, κj is the retardation function, Kj
h represents the hydrostatic

restoring stiffness, Kj
b is the stiffness from the adjacent bridge structure, upj is the relevant

displacement component of the pontoon, and Fj
exc is the excitation force. Note that the effect

of second-order difference-frequency wave excitation force components was examined in
detail in [14] and was found to be negligible in all global bridge responses except for the
transverse displacement of the bridge girder. Similar observations were reported in studies
on long fjord-crossing floating bridges [32,33]. Thus, only the first-order wave excitation
forces are considered in this study.

The full bridge model is constructed and analyzed using the commercial software
package SIMA through a coupled SIMO-RIFLEX solver. Table 6 lists the first few modes of
the bridge model as well as the model shape of the girder. Note that this bridge model has
been verified earlier [14,15], and the modal properties agree well with those reported in
the independent reference reports [29,30].

Table 6. Lowest modes of floating bridge model.

Mode Number Period Dominating Axis Mode Shape

1 33.8 s y
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2.3. Modelling Inhomogeneous Waves

The modelling of inhomogeneous wave loads is based on the assumption that the
sea state around any arbitrary pontoon can be regarded as being homogeneous, while
the spatial variations of the wave characteristics along the crossing is represented by
considering different sea states at different pontoon locations [10–15]. This is deemed
reasonable in view of the fact that the pontoon dimensions are much smaller than the
spacing between adjacent pontoons. The homogeneous wave condition at a given position
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may be characterized by a unidirectional wave spectrum S(ω) and a directional spreading
function D(θ) as

S(ω) =
5

16
(1− 0.287 ln(γ))H2

s
ω4

p

ω5 e
− 5

4 (
ω

ωp )
−4

γ
− 1

2 (
ω−ωp

σωp )
2

(3)

D(θ) =
Γ
(
1 + n

2
)

√
πΓ
(

1
2 + n

2

) cosn(θ − θp
)

(4)

where γ is the non-dimensional peak parameter, Hs is the significant wave height, ω is
the angular wave frequency, ωp is the peak angular frequency, σ is the spectrum width
parameter and is 0.07 when ω ≤ ωp and 0.09 when ω > ωp, θ is the wave heading, θp is the
mean wave heading, and n is the spreading coefficient. In this study, γ and n are set to 2.3
and 4, respectively [28].

As stated earlier, the inhomogeneous wave conditions along a hypothetical crossing
at the Sulafjord are first investigated numerically using SWAN. Next, the inhomogeneous
wave conditions are applied to the floating bridge model. As the two crossing lengths for
the Sulafjord versus the Bjørnafjord are slightly different, the relative distances between the
10 selected positions along the hypothetical crossing are spatially upscaled such that the
total crossing length matches the length of the bridge model. Table 7 provides information
about the mapping of the 10 positions to the nearest bridge pontoons. The wave conditions
at other pontoon locations are obtained based on a linear interpolation. As the SWAN
model is based on phase-averaged energy balance equations, the information of the phase
difference between wave components is lost. In this study, two conditions are considered.
The first refers to fully coherent and correlated waves where the random phase angle of
each wave component is identical at all pontoon locations. The second condition refers
to completely uncorrelated waves at different pontoon locations by assigning different
random phase angles to each pontoon location.

Table 7. Mapping of 10 selected positions to nearest bridge pontoons.

Selected Positions Pontoon Number

TP1 A3
TP2 A5
TP3 A7
TP4 A10
TP5 A15
TP6 A20
TP7 A24
TP8 A27
TP9 A28

TP10 A31

3. Inhomogeneous Wave Conditions and Load Cases

Based on the model and the input data described in Section 2.1, the wave conditions
along the hypothetical crossing numerically analyzed. It should be highlighted that there
are field measurement data at three buoy locations along the crossing available for the
period between April 2017 and July 2019. A comparison between the numerical analysis
using the SWAN model and field measurement of the wave conditions was carried out and
a good agreement was found [17,27], thereby implying that the employed SWAN model
is reliable.

3.1. Analysis of Wave Conditions

Statistical analysis is conducted to provide a description of the wave conditions along
the hypothetical crossing. Figure 5 shows the significant wave height Hs, wave peak period
Tp, and mean wave heading θp at the selected 10 positions for the year 2015. Note that
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the presented statistical results are calculated based on 1 h intervals. Moreover, note that
only the results corresponding to year 2015 are presented owing to the page constraint.
As it can be seen in Figure 5, waves are harsher in the winter period. The maximum Hs is
slightly above 1.3 m, which is very close to that of the annual maximum sea state at the
Bjørnafjord. The peak periods span widely between 1.6 s and 20 s. Clearly, wind waves
and swells co-exist at the hypothetical crossing. It should be highlighted that the mean
wave headings θp are presented according to the nautical convention, i.e., the direction
where the waves come from is measured clockwise from geographic North. The results
show that the wave heading is primarily within 330–350◦, which indicates that the waves
are mainly propagating into the fjord when it is read in conjunction with Figure 1b.
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Figure 5. Significant wave height (a), peak wave period (b), and mean wave heading according to nautical convention (c) at
10 selected positions.

Figure 6 further plots the scatter diagram of the significant wave height Hs and peak
period Tp at TP1 throughout the year 2015. The peak periods of wind waves vary between
1.6 s and 4.4 s. In general, wind waves with a higher Hs are associated with a longer Tp.
For swells, the wave peak period can reach 19.5 s. However, the corresponding significant
wave heights are mostly below 0.3 m, which is quite a small value, and the energy is
expected to be very low as compared to the wind waves. This is supported by a similar
study reported in [14]. Thus, only wind waves are considered in the following studies.
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Figure 6. Scatter plot of Tp and Hs at TP1 throughout year 2015.

A further examination of the results reveals that the maximum significant wave heights
for wind waves occur simultaneously at the ten selected positions along the hypothetical
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crossing. These extreme values are considered as the characteristics of the representative
annual maximum sea states at the crossing and utilized to establish an inhomogeneous
wave condition. Figure 7 shows the spatial variation along the crossing of the significant
wave height, peak period and mean wave direction. Note that the mean wave directions
are presented according to the nautical convention, i.e., 0 refers to the waves from the
North. As it can be seen, there is a special variation of Hs along the crossing with the
highest value occurring at TP6. The inhomogeneity in Tp is relatively small except at TP10
where a substantial drop is observed. Similarly, the mean wave direction is mostly between
320◦ and 350◦, and a significant change is found at TP10.
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at the hypothetical crossing.

3.2. Establishing Inhomogeneous Wave Load Cases

The wave characteristics at the hypothetical crossing at the Sulafjord are quite similar
to the annual design values at the Bjørnafjord where the construction of a floating bridge
is planned [28]. Thus, these sea states are suitable for further detailed structural analysis
of the floating bridge model. As one of the main focuses of the study is to investigate
the effect of different resolutions adopted in modelling inhomogeneous wave conditions
on the global bridge responses, different numbers of data points along the hypothetical
crossing will be used to establish different inhomogeneous wave load cases. According
to the wave inhomogeneity presented in Figure 7, the selection of data points is made
based on the spatial variation of Hs along the crossing. Three different selections of data
points are considered in this study. Wave load case 1 (LC1) is established based on the
wave conditions at TP1, TP6, and TP10. These three locations represent the two ends
and an intermediate position at pontoon location A20 where the most severe sea state is
observed. They correspond to the bridge pontoon locations A3, A20, and A31, respectively
(see Table 6). Wave load case 2 (LC2) builds upon LC1 with two more data points (TP4 and
TP8). Wave load case 3 (LC3) is established utilizing all ten data points along the crossing,
which serves as the reference for comparation with the other two wave load cases.

Figure 8 shows the spatial variations of the wave characteristics at different bridge
pontoon locations. Note that mean wave direction shown in Figure 8 is adjusted according
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to the coordinate systems illustrated in Figure 4. As it can be seen, LC1 employing the
three-point approach is able to represent the spatial variation of Hs quite well. However,
substantial discrepancies are observed for Tp and θp after A20. LC2 employing the five-
point approach is found to match LC3 closely. Only small deviations between A1 and A8
and A20 and between A22 and A29 are observed for Tp and after A27 for θp.
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hypothetical crossing.

Each inhomogeneous wave load case is further composed of two sub-load cases. The
first sub-load case assumes a fully coherent and correlated wave field, and the second
assumes a completely uncorrelated, random wave field. Table 8 lists all the wave load
cases considered in this study. Note that for each wave load case, five independent wave
seeds are run for a simulation length of 1 h for each seed, and the average values are used
to reduce the statistical uncertainties. This is expected to be sufficient in view of results of a
similar study reported in [15]. In total, there are 30 individual simulations.

Table 8. Description of wave load cases.

Wave Load Case Representation of Wave Inhomogeneity Wave Correlation

LC1.1 3-point approach Fully correlated
LC1.2 3-point approach Uncorrelated
LC2.1 5-point approach Fully correlated
LC2.2 5-point approach Uncorrelated
LC3.1 10-point approach Fully correlated
LC3.2 10-point approach Uncorrelated

4. Structural Responses of Floating Bridge

Time domain simulations are conducted to investigate the bridge responses corre-
sponding to the different inhomogeneous wave load cases as listed in Table 8. The dynamic
responses along the bridge girder are focused upon in the present study. In order to con-
centrate on the effect of employing different inhomogeneous wave modelling approaches,
this study excludes the effect of other environmental loads such as current and wind loads.
The traffic load is also excluded.

To examine the statistical uncertainty associated with the employment of five 1 h
simulations, Table 9 lists the maximum values (Max) and standard deviations (SD) of
the transverse displacement of the bridge girder at pontoon location A18 under a fully
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correlated inhomogeneous wave condition modelled by the 10-point approach. This point
is purposely chosen in view of the fact that large displacement is expected around the
mid-point of the floating bridge. The mean values are not examined in view of the fact that
they are virtually zero. The statistical values computed from each of the five seeds and
their averages are compared with the compiled equivalent 5 h simulation. Note that the
equivalent 5 h simulation is a compilation of the data from the five 1 h simulations. As it
can be seen, the relative differences due to 1 h simulations are limited, and the use of their
averages can effectively reduce the statistical uncertainties.

Table 9. Statistic transverse displacement of girder at pontoon location A18.

Statistical Results
1 h Simulation

5 h
Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Average

Max Value 0.0767 m 0.0878 m 0.0891 m 0.0842 m 0.0713 m 0.0818 m 0.0891 m
Difference 13.92% 1.46% 0.00% 5.50% 19.98% 8.19% −

SD Value 0.0194 m 0.0192 m 0.0199 m 0.0199 m 0.0199 m 0.0197 m 0.0197 m
Difference 1.52% 2.53% −1.02% −1.02% −1.02% 0.20% −

Figures 9 and 10 show the statistical results for the bending moments along the bridge
girder about the global y- and z-axes, respectively. As it can be seen, there are some small
discrepancies in the standard deviations of My between the three fully correlated wave load
cases. The maximum discrepancy is found to occur within the segment between A23 and
A25. It is slightly reduced to 10% when the waves are uncorrelated. It is also observed that
the different modelling approaches mainly introduce local discrepancies, while the global
maxima are rather similar. The differences in the maximum and mean values are found to
be negligible. This is expected as they are dominated by the self-weight of the bridge girder.
However, it should be highlighted that the discrepancies in the standard deviations may
affect the prediction of fatigue damage in the bridge girder [15]. As for Mz, the modelling
approaches affect both the maximum values and the standard deviations. The discrepancies
are found to be within 33% and 10% for the maximum values and standard deviations,
respectively, when the waves are fully correlated. The maximum discrepancies are slightly
reduced to 30% and 9% for the maximum values and the standard deviations, respectively,
when the waves are uncorrelated. Similar to My, the global maxima predicted by using the
three different approaches are close to each other despite of the local discrepancies.
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Figure 11 shows the statistical results of the girder’s torsional moment. As it can be
seen, both the maximum torsion values and the standard deviations are affected by different
inhomogeneous wave modelling approaches. The 3-point approach tends to underestimate
both the standard deviations and the maximum values. The discrepancies associated with
the standard deviations are within 12% for fully correlated wave load cases and reduce
to 8% for uncorrelated wave load cases. The different modelling approaches have greater
effects on the maximum torsions of the bridge girder. The maximum discrepancies are
found to be 25% and 26% for fully correlated and uncorrelated wave load cases, respectively.
The 5-point approach is found to generate results that are in a good agreement with the
10-point approach.
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Figures 12 and 13 show the motion statistics along the bridge girder for the y- and
z-displacement components, respectively. In general, the discrepancies in the standard
deviations for the transverse displacement along the girder are within 12% for both cor-
related and uncorrelated wave load cases. The 3-point approach tends to underestimate
the standard deviations throughout the entire bridge length, while the 5-point approach
substantially reduces the discrepancy, especially for the segment between A22 and the
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north end. The discrepancies in the maximum transverse displacement are found to be
within 23% and 20%, respectively, for the correlated and uncorrelated wave load cases.
Owing to the self-weight of the bridge, the different modelling approaches are found to
have virtually no effect on the maximum and mean values of the vertical displacement
of the girder. However, large discrepancies are observed for the standard deviations of
the vertical displacement, especially for the segment between A22 and A29. Within this
segment, the 3-point approach leads to underestimated responses while the 5-point ap-
proach overestimates the dynamic motion. Apparently, the differences in both Tp and θp
have a substantial influence on the dynamic vertical motion responses of the bridge girder.
Beyond this segment, both 3-point and 5-point approaches tend to slightly underestimate
the vertical motion responses. It is also observed that the discrepancies are reduced when
the waves are uncorrelated.
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5. Conclusions

In this paper, the dynamic response of a long, straight, and side-anchored floating
bridge under inhomogeneous wave loads is investigated. A hypothetical crossing at
the Sulafjord is chosen, and the wave environment at 10 selected positions along the
crossing is numerically analyzed. Next, different inhomogeneous wave conditions are
established based on selected wave data at 3, 5, and 10 positions, respectively. Time-domain
simulations are conducted to examine the effect of different modelling approaches of the
inhomogeneous wave condition on the global responses of a floating bridge.

The analysis of the wave field along a hypothetical crossing at the Sulafjord shows
that the spatial wave inhomogeneities vary gradually. This implies that it may be possible
to model the inhomogeneous wave field by using a reduced resolution in the numerical
simulation for the sake of computational efficiency. Three different inhomogeneous wave
conditions based on a selection of different numbers of data points are thus established,
and a total of six wave load cases are defined.

The global structural analysis of the floating bridge girder shows that different mod-
elling approaches introduce a little difference in the global maxima of the bending moment
and motions. This implies that it may be possible to employ a simplified and coarser model
for the inhomogeneous wave conditions in a preliminary bridge analysis. This could poten-
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tially result in a reduction in the number of inhomogeneous wave conditions to consider
in the study and thus reduce the computational cost. However, attention should be paid
to local regions in connection with detailed analysis and design as local discrepancies in
both bending moment and girder motions are observed. Furthermore, different modelling
approaches are found to result in discrepancies in the standard deviations of the girder’s
responses. They may lead to different fatigue damage estimations which could affect
the bridge design. It is also observed that the 3-point approach tends to underestimate
the torsion in the bridge girder. The discrepancies for uncorrelated wave load cases are
generally smaller than those for coherent and fully correlated wave load cases.
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